Target Grades: 6th-12th
Content Areas: Biology, Architecture and Design
Topics: Fungi, ecosystem resources, building design
Time required: One 50-minute class period for preparation and flood simulation plus one 50-minute follow-up period 5-7 days later for interpretation of molding experimental results.
NGSS: Matter and Energy – MS-LS2-1, MS-LS2-4
Superstorm Sandy struck the Northeast United States in late October 2012 with ferocious winds and widespread flooding that heavily damaged homes along the New York and New Jersey coasts. After the storm, an effort began to restore heat and power, and to rebuild homes damaged by water and wind. But recovery was more difficult than anyone had thought thanks to an aggressive and dangerous enemy: mold. It started to destroy homes even as they were being repaired. In addition to discoloring walls and staining floors, mold and mildew can cause health problems such as allergies, eye and lung irritation, headaches, and rashes. Mold and mildew can also spread over time, and as they do, they can digest and destroy the materials they grow on.
To learn more about the impact of mold on the Sandy recovery process, watch this video “Mold Compounds Sandy’s Destruction”
Mold (called mildew in its early growth stages) is actually made up of tiny living organisms in the fungi kingdom—that’s the same kingdom where you’ll find mushrooms and yeasts. Like all living things, mold needs food, water, shelter, air, and space to survive and reproduce. But unlike humans' many resource needs, such as food from plants and animals, buildings for shelter, and clean water, mold can get all of those things from just one place: wet, organic material. To mold, almost any natural material, whether it’s wood, a dead animal, or the bread on your table, makes a perfect habitat.
Mold reproduces in a couple of ways. One way is to divide over and over again into many, many small individuals that join together to form a colony. It also reproduces by spreading small, seed-like particles called “spores” that travel easily through air and water. The spores have the potential to grow on any suitable organic surface they land on. Because of its ability to produce spores, mold can spread very easily, presenting a headache for any homeowner trying to control it.
Floods and hurricanes can fill a home with dirt and water—a perfect habitat for mold. With climate change threatening increasingly severe weather and flooding, we need to figure out how to build homes that are more resistant to mold. If your home suffered severe water damage, which building materials and furniture would you need to remove first to avoid a mold catastrophe? The couch, the fridge, or the wall coverings? In this experiment, you’ll simulate a flood to test your predictions about which building materials encourage mold growth, and which ones will slow mold down.
Materials:
*Safety Note: Though molds and mildews are naturally found in nearly every ecosystem on the planet, molds do produce spores, which can be respiratory irritants or cause allergic reactions in some students. The materials produced in this activity should be kept sealed, and never opened by students for observation. Safely dispose of the products of this lab by tossing the sealed bags directly into the trash bin.
Predict which household building materials will support mold growth.
Build a mold-resistant and a mold-susceptible “house.”
You can use this sheet to help you plan.
Flood and Observe
Additional Resources:
FEMA Guide: Mold and Mildew
Centers for Disease Control and Prevention: Mold FAQ's
Next Generation Science Standards:
MS-LS2-1: Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.
MS-LS2-4: Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.
Our coverage reaches millions each week, but only a small fraction of listeners contribute to sustain our program. We still need 224 more people to donate $100 or $10/monthly to unlock our $67,000 match. Will you help us get there today?